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Abstract
We address the ‘major open problem’ of evaluating how much increased
efficiency in estimation is possible usingnon-separable—as opposed to
separable—measurements ofN copies ofm-level quantum systems. First,
we study the six casesm = 2, N = 2, . . . ,7 by computing the 3× 3 Fisher
information matrices for the correspondingoptimal measurements recently
devised by Vidalet al. We obtain simple polynomial expressions for the
(‘Gill–Massar’) traces of the products of the inverse of the quantum Helstrom
information matrix and these Fisher information matrices. The six traces
all have minima of 2N − 1 in the pure state limit—while for separable
measurements, the traces can equalN, butnot exceed it. Then, the result of an
analysis form = 3, N = 2 leads us toconjecture that for optimal measurements
for all m andN, the Gill–Massar trace achieves aminimum of (2N −1)(m−1)
in thepure state limit.

PACS numbers: 03.67.−a, 89.70.+c, 02.50.−r

1. Introduction

We investigate information-theoretic properties of the optimal measurement schemes recently
devised by Vidalet al [1], helping thereby to address the ‘major open problem’ [2] of evaluating
how much increased efficiency in estimation is possible usingnon-separable measurements
(cf. [3]). In their extensive study, ‘State estimation for large ensembles’, which we seek to
extend here, Gill and Massar stated that ‘we cannot compare our results with the recent analysis
of covariant (optimal) measurements on mixed states [1] because we suppose separability of
the measurement, whereas [1] does not’ [2]. A ‘separable measurement is one that can be
carried out sequentially on separate particles, where the measurement on one particle at any
stage (and indeed which particle to measure: one is allowed to measure particles several times)
can depend arbitrarily on the outcomes so far’ [2].
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The analyses here are conducted in terms of the (classical)Fisher information (of the
probability distributions associated with the non-separable measurements), making use of the
quantum (Helstrom) Craḿer–Rao bound [4] on the Fisher information matrix for anyoprom
(operator-valuedprobability measure) [5, 6]. Contrastingly, the studies of Vidal and his several
Barcelona colleagues [1, 7–9] have been formulated primarily in terms offidelity, F(ρ, ρ′)
(ρ and ρ′ being density matrices) [10, 11], and secondarily,information gain [7]. Now,
there surely exists an intimate connection between these approaches, since 2(1 − F(ρ, ρ′))
functions as theBures distance betweenρ and ρ′. The Bures metric is a distinguished
member (theminimal one) of a continuum of possible quantum extensions—each associated
with a distinct operator monotone function—of the (classical) Fisher information metric
[12–14]. The Helstrom–Craḿer–Rao bound corresponds to the particular use of the Bures
metric via the concept of thesymmetric logarithmic derivative [4]. An interesting hypothesis
is that asymptotically the Fisher information matrix for optimal measurements is simply
proportional to the metric tensor associated with some specific operator monotone function.
(Our results below indicate that such a role is definitelynot played by the Bures metric.)

We shall be concerned here primarily (cf. sections 3.4.2 and 3.4.4) with the two-level
quantum systems, representable by the 2× 2 density matrices,

ρ = 1

2

(
1 + z x + iy
x − iy 1 − z

)
(1)

wherer2 = x2 + y2 + z2 � 1. The particular(x, y, z) parameterization employed in (1)
corresponds to the use of Cartesian coordinates for the ‘Bloch (or Poincaré) sphere’ (unit
ball in three-space) representation of the two-level systems [15], [16, section 4.2], while the
alternative (spherical coordinate) parameterr is the radial distance from the origin. Pure states,
for which |ρ| = 0, correspond tor = 1 and the fully mixed state, for which|ρ| = 1

4, to r = 0.
For the cases ofN copies (N = 2, . . . ,7) of a two-level quantum system (1) we obtain

below in section 3.3 a quite interesting pattern of results of increased efficiency using non-
separable measurements, which strongly suggests generalizability to arbitraryN . To explicitly
examine the casesN > 7 would either entail considerable additional computations for each
specificN and/or substantial analytical advances (cf. section 4.3) allowing one to formally
establish the measure of increased efficiency forarbitrary N. (We note that Latorreet al [8]
had to proceedcase-by-case, that is, eachN individually, since they ‘did not know how to
build the POVM algorithmically’.) In section 4.3 we explore one possible approach in this
regard, attempting to explain the Fisher information matrices we compute in section 3 in
terms of monotone metrics. In section 3, we also formulate a conjecture as to the increase
in efficiency achieveable using non-separable optimal measurements forN copies ofm-level
quantum systems in general.

To begin our study, immediately below in section 2, we expand upon an observation [17,
p 2684] regarding an information-theoretic relationship between certain classical and quantum
entities—that is, the Fisher information matrix for a certain (quadrinomial) multinomial
probability distribution and the quantum Helstrom information matrix (proportional to the
Bures metric tensor), and its implications for optimal measurements.

In section 4 we examine further ramifications on issues of state estimation [2, 4] and
universal coding (data compression) [18–21]. There appears to be an interesting relation
between the devising of optimal measurements as in [1], and universal quantum coding,
as both processes involve averaging with respect to isotropic prior probability distributions
by ‘projecting onto total spin eigenspaces, and within each such subspace, onto total spin
eigenstates with maximal total spin component in some direction’ [1]; cf. [1, equations (5.33)
and (5.34)] and [19, equation (2.48)]. The particular prior distribution which yields both
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the minimax and maximin for the universal quantum coding of the two-level systems is
based on thequasi-Bures metric, a particular example of a monotone metric. We attempt in
section 4.3 to relate the Fisher information matrices we compute in section 3 to the monotone
metrics.

2. Proportionality between Helstrom and Fisher information matrices

The density matrices (1) turn out to have an intimate relationship with a particular form
of multinomial (that is, quadrinomial) probability distribution—thefour distinct possible
outcomes being assigned probabilities

x2, y2, z2, 1 − x2 − y2 − z2. (2)

One can attach to the three-dimensional convex set of two-level quantum systems (1), adapting
one (the simplest) of the ‘explicit’ formulas of Dittmann [22, equation (3.7)] [23],

dBures(ρ, ρ + dρ)2 = 1

4
Tr

{
dρ dρ +

1

|ρ|(dρ − ρ dρ)(dρ − ρ dρ)

}
, (3)

the 3× 3 quantum (Helstrom) information matrix [4, 2, 24] (that is,four times the Bures
metric tensor [23, 25, 26, 31]),

Hq(x, y, z) = 1

(1 − x2 − y2 − z2)

( 1 − y2 − z2 xy xz

xy 1 − x2 − z2 yz

xz yz 1 − x2 − y2

)
. (4)

We use the subscriptsq andc (in a suggestive, perhaps not fully rigorous manner) to denote
results stemming from quantum or classical considerations. Also, note that (4) ‘blows up’
at the pure states themselves, so it will be problematical, at best, to directly compare results
pertaining to (4) with ones based onpure state models [2, 27].

In spherical coordinates(r, θ, φ), x = r cosθ, y = r sinθ cosφ, z = r sinθ sinφ, the
matrix (4) takes adiagonal form

Hq(r, θ, φ) =
 1

1−r2 0 0

0 r2 0
0 0 r2 sin2 θ

 (5)

for this orthogonal system of coordinates (cf. [28]). (Below, in the interest of succinctness,
we will replace the frequently occurring expressionx2 + y2 + z2 by its equivalent,r2.)

Now, the quantum information matrices (4) and (5) are simply proportional to the
(classical) Fisher information [29] matricesIc(x, y, z) andIc(r, θ, φ) for the quadrinomial
probability distribution (2). (By way of algorithmic example, thexy-entry of the 3× 3 Fisher
information matrix (in its Cartesian coordinate form,Ic(x, y, z)) is computable as the expected
value of the (two-fold) product of the logarithmic derivatives of (2) with respect tox and with
respect toy.) More precisely, the nine entries ofIc(x, y, z) are allfour times the corresponding
entries of (4), that is

Ic(x, y, z) = 4Hq(x, y, z). (6)

A natural explanation for this phenomenon is that theinformation geometry [30] of both
models is that of the standard metric on the surface of a three-sphere in four-dimensional
Euclidean space [13, 31].

Both quantum (Helstrom) information and Fisher information possess the property of
additivity; that is, forN independent identical density matrices or probability distributions, the
information matrices (possibly scalars) areN times those for a single one [5, exercise 1.10],
[4, section VI.4], [32–35].



7032 P B Slater

By the quantum version of the Cramér–Rao theorem [4], the inverse matrixHq(x, y, z)−1

serves as a lower bound on the variance–covariance matrixV (x, y, z) for any unbiased
estimator of the parameters (x, y, z) of ρ. (This means that the matrix difference,
V (x, y, z) − Hq(x, y, z)−1, must be nonnegative definite, that is, have all its eigenvalues
non-negative.) In this regard,

Hq(x, y, z)
−1 =

( 1 − x2 −xy −xz
−xy 1 − y2 −yz
−xz −yz 1 − z2

)
. (7)

(Of course,Hq(r, θ, φ)−1 is diagonal.)
By dint of the additivity of information, in conjunction with the Cramér–Rao theorem

(cf. [2, equation (26)]), one can conclude that it isnot possible to devise forN < 4 independent
identical two-level systems, anoprom [5, 6], which has for its outcomes the quadrinomial
distribution (2) (cf. [1, 36]). (When we attempted to construct such an oprom for the case
N = 2, we found that the four operators couldnot all be nonnegative definite if they were to
yield (2).) However, forN � 4, the question of whether such an oprom exists would appear to
be a completely open one—since now the Cramér–Rao theorem doesnot rule out its possibility.
(The results of Vidalet al [1] show that an optimalminimal number of measurements forN >3
is at leastfifteen, exceeding the numberfour for an oprom that would give as its outcomes the
quadrinomial probability distribution (2).) If such an oprom could be found forN = 4 itself,
then the Craḿer–Rao inequality would befully saturated.

3. Analyses of optimal measurements of Vidal et al for N copies of two-level quantum
systems

3.1. Computation of the Fisher information matrices

3.1.1. N = 2. Let us now consider the probability distribution in [1] obtained from the
optimal minimal number (five) of measurements for the case ofN = 2 identical independent
copies of the two-level systems (1). The five probabilities—as we have explicitly found—can
be written as (the three)

1
4(1 − r2), 3

16(1 + z)2, 1
48(8x

2 − 4
√

2x(z− 3) + (z− 3)2) (8)

together with the pair
1
48(9 + 2x2 ± 4

√
3xy + 6y2 + 2

√
2(x ±

√
3y)(z− 3)− 6z + z2).

Quite remarkably, the associated Fisher information matrix (Ĩc) turns out to precisely
equal the quantum (Helstrom) information matrix,Hq(x, y, z)—and not 2Hq(x, y, z), which
is the upper bound furnished by the quantum Cramér–Rao theorem. So, the bound could be
said to be ‘half-saturated’. (In regard to this specific result, Gill has observed that there may
exist other measurement schemes which aresub-optimal according to thefidelity criterion of
[1], but superior in terms of Fisher information (cf. [7]).)

3.1.2. N = 3. For an optimal minimal set of measurements forN = 3, we can take the eight
probabilities, consisting of the four pairs,

(1 ± x)3
12

,
(1 ± y)3

12
,
(1 ± z)3

12
,

1

4

(
1 ± x + y + z√

3

)
(1 − r2). (9)

The associated Fisher information matrix is expressible as

2Hq(x, y, z) +
1

2((x + y + z)2 − 3)

(
a b b

b a b

b b a

)
(10)
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wherea = 2(1 − xy − xz − yz) andb = −1 + r2. The second summand in (10) isnegative
definite (having two of its three negative eigenvalues equal to−1

2), while 3Hq(x, y, z) is the
upper bound on the Fisher information matrix provided by the Cramér–Rao theorem.

3.1.3. N = 4. An optimal minimal set of measurements forN = 4 yields a 15-vector of
probabilities. The Fisher information matrix for this probability distribution is

3Hq(x, y, z) +
1

12

(−7 − 5y2 − 5z2 5xy 5xz
5xy −7 − 5x2 − 5z2 5yz
5xz 5yz −7 − 5x2 − 5y2

)
. (11)

The second term isnegative definite with one eigenvalue equal to− 7
12 and the other two equal

to − 1
12(7 + 5r2). If we subtract (11) from the Craḿer–Rao upper bound 4Hq(x, y, z), we

obtain (as we must) a nonnegative definite matrix, having two eigenvalues1
12(19 + 5r2) and

one eigenvalue7
12 + 1

1−r2 .

3.1.4. N = 5. ForN = 5, a 20-vector of probabilities was obtained for the optimal minimal
number of measurements. The Fisher information matrix can be expressed as the sum of
4Hq(x, y, z) (which dominates it, while 3Hq(x, y, z) does not) and anegative definite matrix,
having one of its three negative eigenvalues equal to− 3

16(5 + 3r2). This negative definite
matrix can be written as the product of 1

16(−3+(x+y+z)2)
and a 3× 3 matrix, the (1, 1) cell of

which is

− 2(−20 + 7y4 + 9y3z − 11z2 + 7z4 − 5x3(y + z) + 3yz(5 + 3z2)

+ 3x(y + z)(5 + 3y2 + 3z2) + x2(10 + 7y2 − 5yz + 7z2) + y2(−11 + 14z2)) (12)

and the(1,2) off-diagonal entry is

− 5x4 + 14x3y + 2x2(5 + 9y2 + 14yz− 5z2)− 5(−1 +y2 + z2)2 + 14xy(−3 + (y + z)2).

(13)

The remaining cells are obtainable by simple symmetry arguments (for example, the (2, 2) cell
can be obtained by interchangingx andy in (12)).

3.1.5. N = 6. ForN = 6, we used an optimal (but not minimal) set of 33 measurements.
We found, using a large number of randomly generated points(x, y, z), that the associated
Fisher information matrix was strictly dominated by 5Hq(x, y, z), but not by 4.99Hq(x, y, z).
The Fisher information matrix takes the form (cf. (11))

5Hq(x, y, z) +
1

120

(
a Axy Axz

Axy b Ayz

Axz Ayz c

)
(14)

where

A = 193− 31r2 a = −125− 146y2 − 146z2 + 31(y2 + z2)2 + x2(47 + 31y2 + 31z2)

(15)

and the diagonal entryb can be obtained froma by interchangingx andy, andc from a by
interchangingx andz.

One of the three negative eigenvalues of the second (‘residual’) matrix in (14) is
(125− 172r2 + 47r4)/(120(−1 + r2)). Now, if we were to rewrite (14) in the form of
4.99Hq(x, y, z) plus aslightly revised residual matrix, the eigenvalue in question would be



7034 P B Slater

altered only in the respect that the constant 125 would change to 123.8. This would render
it positive for r >0.992 348, leading to a loss of strict dominance forr ∈ [0.992 348,1]. In
this specific sense, the upper bound of 5Hq(x, y, z) on the Fisher information matrix istight.
The residual matrix forN = 4 strictly dominates that forN = 6. This indicates that the ‘fit’
of (N − 1)Hq(x, y, z) to the Fisher information matrix for optimal measurements ofN copies
improves asN increases.

3.1.6. N = 7. Employing a 42-vector of probabilities, we found forN = 7 the Fisher
information matrix to be strictly dominated by 6Hq(x, y, z), but not by 5.99Hq(x, y, z).
Reviewing our previous analyses, we then found that the analogous situation held also for
N = 3, . . . ,6; that is, the Fisher information matrix was dominated by(N − 1)Hq(x, y, z),
but not by(N − 1.01)Hq(x, y, z). The violations of thesediminished bounds occur for nearly
pure states, that is,r ≈ 1.

Pursuing this line of thought, if we restrict consideration to the more mixed states for which
r < 1

2, then forN = 7 we have found that 3.9Hq(x, y, z), but not 3.85Hq(x, y, z) bounds
the Fisher information matrix for the optimal set of measurements. Calculations suggest the
hypothesis that in the neighbourhood of the fully mixed stater = 0, the bound on the Fisher
informationmatrices approaches from aboveNHq(0,0,0)/2, that is,N2 times the 3×3 identity
matrix. Now, the fully mixed state is classical (binomial) in character, while the pure states are
quantum in nature. (It is interesting to note that Frieden (private communication) finds that in
classical scenarios, onlyone-half of the bound or phenomenological informationJ is utilized
in the intrinsic quantum informationI [29, equations (5.39), (6.55)]: ‘In all covariant quantum
theories (e.g., quantum mechanics, quantum gravity)I andJ are exactly equal. In deterministic
classical theories such as classical electromagnetics and general relativityI = J/2. But in
statistical classical theoriesI = J again’.)

3.1.7. N > 7. We are not able to proceed any further, that is, forN > 7, as there presently
do not appear to be corresponding sets of optimal measurements. As acaveat to the reader,
let us point out that to recreate the optimal measurements for the casesN = 6 and 7 (which
unlike the instancesN < 6, were not formally demonstrated to be minimal in character),
it is necessary to rely upon the preprint version (quant-ph/9803066) of [8], since there are
certain errors (as confirmed by R Tarrach, though no formal erratum has appeared) in the final,
published paper.

3.2. Properties of the computed Fisher information matrices

3.2.1. Diagonal nature for even N in spherical coordinates. We have found that the Fisher
information matrices given above for the optimal measuements of Vidalet al [1] for both
N = 4 and 6 arediagonal in spherical coordinates (r, θ, φ). ForN = 4, this is

1

12

 29+7r2

1−r2 0 0

0 r2(29− 5r2) 0
0 0 r2(29− 5r2) sin2 θ

 (16)

and forN = 6 is

1

120

 475+172r2−47r4

1−r2 0 0

0 r2(475− 146r2 + 31r4) 0
0 0 r2(475− 146r2 + 31r4) sin2 θ

 . (17)

ForN = 2, we also have a corresponding diagonal matrix, that is, (5).
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Cox and Reid [37, p 2] have listed three ‘consequences of orthogonality’ of the
parameterization of a Fisher information matrix, such as we have just observed. These are
that: (i) the maximum likelihood estimates of the means of the parameters are asymptotically
independent; (ii) the asymptotic standard error for estimating one parameter is the same
whether the other parameters are treated as known and unknown; and (iii) there may be
simplifications in the numerical determination of the means of the parameters. ‘While
orthogonality can always be achieved locally, global orthogonality is possible only in special
cases’ [37, p 2]. In accompanying discussions to [37], Sweeting identifies four advantages to
orthogonalization—computation, approximation, interpretation, and elimination of nuisance
parameters—while Barndorff-Nielsen, as well as Moolgavkar and Prentice, explain parameter
orthogonality in terms of Frobenius’ theorem. The latter authors also indicate that the theorem
of de Rham [38, p 187] gives necessary and sufficient conditions for each orthogonal parameter
to be independent of the others (as they arenot in our three even-dimensional examples just
given).

3.2.2. Pure and fully mixed state limits. Again using spherical coordinates, it is interesting
to note that for theodd cases ofN = 3,5,7, in the pure state limit (r → 1), the off-diagonal
elements of the corresponding3×3 Fisher information matrix converge to zero. In all six (both
odd and even) cases, in this same limit, the (1, 1)-entries are indeterminate, the (2, 2)-entries
areN2 and the (3, 3)-entries areN sin2 θ

2 .
For the fully mixed state,r = 0 (allowing the angular variablesθ andφ to remain free),

the only non-zero entry is the (1, 1)-cell. ForN = 2 it is 1, forN = 3 it is
1
6(10 + sin 2θ(cosφ + sinφ) + sin2 θ sin 2φ) (18)

for N = 4 it is 29
12, forN = 5 it is (103+5 cos2φ)

32 , forN = 6 it is 95
24, and forN = 7 it is

1
96(456 cos2 θ + 7 sin 2θ(cosφ + sinφ) + sin2 θ(456 + 7 sin 2φ)). (19)

3.2.3. Integrals over the Bloch sphere of volume elements. ForN = 2, the integral of the
volume element of the Fisher information matrix (that is, the square root of the determinant)
over the (Bloch sphere of) two-level quantum systems isπ2 ≈ 9.8696, forN = 3 it is 21.0235,
for N = 4 it is

1
441

√
29
3 π
(
4705E

(− 7
29

)− 4194K
(− 7

29

)) ≈ 35.0281 (20)

(whereE andK denote the corresponding elliptic integrals), forN = 5 it is 51.0763, for
N = 6 it is 69.1253, and forN = 7 it is 88.8621. These particular results would be needed for
the application to the optimal measurements of Vidalet al [1] of the universal coding theorem
of Clarke and Barron [18], discussed below in section 4.1.

3.3. Gill–Massar traces

Let us first observe that Gill and Massar [2, equation (26)] asserted that the upper (quantum
(Helstrom) Craḿer–Rao) boundNHq , wasnot, in general, achievable in a multiparameter
setting. This does appear to be strictly the case. However, our results forN = 2, . . . ,7 for
the three-parameter 2× 2 density matrices, indicate that—using the optimal measurements of
Vidal et al [1]—one can, by choosingN large enough, come indefinitely close for the nearly
pure states to this bound.

To further relate to these analyses of Gill and Massar, we have computed forN = 2, . . . ,7,
the traces of the product ofHq(x, y, z)−1, given in (7), and the Fisher information matrices we
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Figure 1. Gill–Massar traces forN = 4,5, 6 and 7 scaled by their values at the pure states,r = 1,
that is, 2N − 1 . They-intercepts forr = 0, corresponding to the fully mixed state, increase with
N.

have obtained using the optimal measurements of Vidalet al. (The traces of Fisher information
matrices play a central role in the work of Frieden on the fundamental equations of physics
[29, section 2.3.2].) For the estimation of pure states, theorem I in [2] asserts that this trace
quantity is bounded above byN , while theorem II there says that the same bound applies to
mixed states, with the restriction toseparable measurements. It is also demonstrated there
that these bounds are attainable—and for largeN simultaneously for all states.

ForN = 2, it is easy to see, in the context of the results above, that this (‘Gill–Massar’)
trace result is simply 3. ForN = 3, we get another constant, 5, for the trace. ForN = 4, we
obtain

GM4 = 29− r2
4

(21)

which is 7 for pure states and 7.25 for the fully mixed state. ForN = 5, the Gill–Massar trace
is

GM5 = 19− r2
2

(22)

which is 9 for pure states and 9.5 for the fully mixed state. ForN = 6, it is

GM6 = 95− 8r2 + r4

8
. (23)

This last expression is monotonically decreasing from95
8 = 11.875 atr = 0 to 11 (that is,

2N − 1) atr = 1. ForN = 7, the Gill–Massar trace is

GM7 = 57− 6r2 + r4

4
(24)

which equals57
4 = 14.25 at r = 0 and 13 atr = 1, being again 2N − 1. (In an earlier

version of this paper, quant-ph/0002063, the results given (including figure 1, plotting the
Gill–Massar trace) forN = 7 were ‘anomalous’ in this regard. We subsequently ascertained
that they were erroneous in nature, due to a programming error.) In figure 1, we plotGMN

(2N−1)
for N = 4,5,6 and 7.

It is easy to see, then, that in these six cases the Gill–Massar bound [2, equation (27)]
of N is violated—as theorem III of their paper recognizes will occur fornon-separable
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measurements. So, we obtain a simple pattern of 2N − 1 for the minimum of the trace
quantity in question. With regards to these results, R Gill remarked (private communication,
February 2000) that ‘this is all very interesting. It means that there is a big discontinuity at the
surface of the Bloch sphere (where none of these 3× 3 Fisher information matrices is well-
defined), and it means that the gain in using joint measurements over separate measurements
for mixed states is substantial throughout the Bloch sphere’.

3.4. Analyses for m-level pure states

3.4.1. m = 2. In a further effort to relate to the analyses of Gill and Massar [2], let us
consider for the moment simply the two-level pure states, so we setr = 1. In terms of
the polar coordinates(θ, φ), the Helstrom information matrix takes the form (cf. (5), [40
p 4238]) (

1 0
0 sin2 θ

)
. (25)

Then, the Fisher information matrix for the optimal measurements ofN copies [8] is simplyN2
times (25), as we have confirmed through computations forN = 2, . . . ,7 (cf. [2]). (So, in the
pure state case, unlike the mixed state one, the quantum Cramér–Rao bound ofN times (25)
is not asymptotically approached—though the Gill–Massar trace bound ofN is achievable.)

3.4.2. m = 3. We have also verified that the same basic additive relation holds in the
case of thethree-level pure states forN = 2, using the formulas in [9]. Let us use the
parameterization of these states in terms offour angular variables (θ, φ, χ1, χ2) employed in
[41, equation (2.1)],

|ψ〉 = eiχ1 sinθ cosφ|1〉 + eiχ2 sinθ sinφ|2〉 + cosθ |3〉. (26)

Then, the Helstrom information matrix is
4 0 0 0
0 4 sin2 θ 0 0
0 0 a − sin4 θ sin2 2φ
0 0 − sin4 θ sin2 2φ b

 (27)

where (cf. [42])

a = 1
2(6 + 2 cos 2θ + cos 2(θ − φ)− 2 cos 2φ + cos 2(θ + φ)) sin2 θ cos2φ, (28)

b = −1
2(−6 − 2 cosθ + cos 2(θ − φ)− 2 cos 2φ + cos 2(θ + φ)) sin2 θ sin2φ.

(Note that (27) is free of the variables,χ1 andχ2—as (5) is free ofφ.) So, forN = 2
copies of a spin-1 system, the Fisher information matrix is identically (27), paralleling the
specific results for both the pure and mixed two-level quantum systems forN = 2. We also
intend to analyse the caseN = 3, using the specific prescription for the corresponding optimal
measurements in [9, section 6].

3.4.3. Supplementary analysis for 3-level mixed states. We have attempted—following the
general methodology laid out by Vidalet al [1] for the two-level mixed quantum systems—to
construct an optimal measurement scheme forN = 2 copies of mixedthree-level systems.
In doing so, we incorporated the optimal measurements forN = 2 copies ofpure three-level
quantum systems presented by Acı́n et al in [9, section 5], that were utilized immediately
above. (J Latorre informs me that he and his co-authors ‘did not find any manageable way to
make progress’ in such extendedm = 3 mixed cases, although he did point out that Arvind
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had recast and further developed many of their results using Penrose rays—in apparently yet
unpublished work.) This led us to an oprom withtwelve distinct outcomes,nine corresponding
to the vectors explicitly presented in [9, equations (39), (40)], and the additionalthree coming
from our own orthogonal decomposition of the associated rank-three ‘residual’ projector
(cf. [1, equation (3.3)]). (A weight of23 was applied to the subset of nine outcomes.)

With this twelve-outcome oprom in hand, we found bynumerical means that the Gill–
Massar trace equalled a constant, 6 (while forN = 2 copies oftwo-level systems this trace
quantity was found in section 3.3 also to be a constant, 3). (In [42] we have been investigating
the possibility ofsymbolically inverting the 8× 8 Helstrom information matrix—making use
of a recently developed Euler angle parameterization of the 3× 3 density matrices [43]. The
Gill–Massar trace would, of course, be the trace of the product of this inverse matrix and the
Fisher information matrix associated with the twelve-outcome oprom.) This result and our
earlier ones form = 2, N = 2, . . . ,7, lead us to conjecture that for non-separable optimal
measurements ofN m-level quantum systems, the Gill–Massar trace for allm andN is exactly
(2N − 1)(m− 1) in the pure state limit, and no less than this for any mixed state.

Now, for any measurement of a strictly pure state itself, the Gill–Massar trace cannot
exceedN(m − 1) by theorem I of [2]. (This bound is known to be achieveable form = 2
by theorem VII of [2], and for mixed states using separable measurements by theorem VI.)
So there is a clear discontinuity displayed bynon-separable optimal measurementsnear the
pure state boundary, as well as considerable increased efficiency in estimating strictly mixed
or impure states through the use of such measurements.

3.4.4. m = 4. We have ascertained the Helstrom information matrix for pure states offour-
level systems, making use of the appropriate analogue of the parameterization (26) presented
in [44, equation (13)]. The six parameters naturally divide into two sets of three, and once
again the entries of the Helstrom information matrix are free of the (three) members of one of
the two sets.

4. Universal coding

We can also apply to the three-dimensional family of quadrinomial probability distributions
(2) certain important (classical) asymptotic results of Clarke and Barron [18] pertaining to a
number of problems, including those of universal data compression and density estimation.
Then, we can compare their formulas with those for the 2× 2 density matrices (1), based on
the extension to the quantum domain of two-level systems by Krattenthaler and Slater [19,
20] of this work of Clarke and Barron (cf. [11]). (In what follows, we will denote probability
distributions of a general nature byw and more specific ones byW , and subscript them—as
noted before—by eitherc or q to denote a result stemming from an analysis in the classical or
quantum domain.)

4.1. Classical results of Clarke and Barron

Clarke and Barron examined the relative entropy (N → ∞) between a true density function
and a joint (‘Bayesian’) density function for a sequence ofN random variables taken to be the
average of the possible densities (comprising a parameterized family) with respect to a (prior)
probability distribution over this family of density functions. The result of Clarke and Barron
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for the asymptotic relative entropy (Kullback–Leibler index) between the true density and the
mixture is

d

2
log

N

2πe
+

1

2
log |Ic(α)| − logwc(α) + o(1) (29)

whereα denotes thed-vector of variables parameterizing the family of densities,wc(α) a
prior probability distribution used to average theN-fold products of independent identical
density functions, andIc(α) the associatedd×d Fisher information matrix. As applied to our
particular three-parameter (d = 3) family of quadrinomialdistributions (2), withα = (r, θ, φ),
we have

|Ic(r, θ, φ)| =
(

64

1 − r2
)
r4 sin2 θ. (30)

Then, if we choose for the probability distribution,wc(α), the particular one

Wc(r, θ, φ) =
(

1

π2
√

1 − r2
)
r2 sinθ ∝

√
|Ic(r, θ, φ)|, (31)

the asymptotic relative entropy between the true density and its Bayesian (mixture) average
assumes the form [18, equation (1.4)]

3

2
log

N

2πe
+ log 8π2 + o(1). (32)

(Let us note thatr2 sinθ dr dθ dφ is the Jacobian determinant of the transformation
from Cartesian to spherical coordinates or, equivalently, the volume element in spherical
coordinates.) Our particular selection ofWc(r, θ, φ) is ‘Jeffreys’ prior’ for this case, that is, the
normalized (over the Bloch sphere) form of the volume element (

√|Ic(r, θ, φ)|) of the Fisher
information metric (cf. section 3.2.3). (The normalization factor, 8π2, is evident in (32).)
Jeffreys’ priors, as shown by Clarke and Barron [18], fulfil the desideratum of yielding the
commonminimax andmaximin of the asymptotic relative entropy. In the quantum analogue,
though, (31) does not play this distinguished role, although a close (‘quasi-Bures’) relative of
it does [20, 45]. This probability distribution is

Wq(r, θ, φ) = 0.083 2258
e

1− r2
(

1 − r
1 + r

)1/2r

r2 sinθ. (33)

4.2. Quantum results of Krattenthaler and Slater for two-level systems

Krattenthaler and Slater [19, 20] have sought to extend the general results of Clarke and Barron
to two-levelquantum systems (1). They averaged theN-fold tensor products of identical 2×2
density matrices (1) (rather than averaging the simple products ofN random variables) with
respect to (spherically symmetric/unitarily invariant) probability distributions of the form
wq(r)r

2 sinθ (cf. [1, equation (1.4)]). The analogue (in terms of thequantum relative (von
Neumann) entropy) of the Clarke–Barron result (29) is then (d = 3)

3

2
log

N

2πe
+

1

2
logIq(r)− logwq(r) + o(1) (34)

where (cf. (30))

Iq(r) = e2

(1 − r2)2
(

1 − r
1 + r

)1/r

. (35)

So,

Iq(r)r
4 sin2 θ = 144.372Wq(r, θ, φ)2 (36)
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Figure 2. Quantum asymptotic relative entropy term,1
2 logIq(r) (lower curve), and itslarger

classical counterpart,12 log 64
1−r2 (upper curve), plotted against radial distance (r) in the Bloch

sphere of two-level systems.

which can be compared with its classical counterpart,

|Ic(r, θ, φ)| = 64π4Wc(r, θ, φ)
2 (37)

where 64π4 ≈ 6234.18.
As noted [20], the quasi-Bures probability distribution,Wq(r, θ, φ), given by (33), fulfils

in the quantum domain of two-level systems (1), the distinguished role—in yielding the
common asymptotic minimax and maximin—of the Jeffreys’ prior (that is, the volume element
of the Fisher information metric) in the classical sector. In figure 2 we plot the term1

2 logIq(r),
present in (34), along with the comparable (but always larger forr < 1) classical term,
1
2 log( 64

1−r2 ), in (30). The units of the vertical axis are, then, ‘nats’ of information. (A nat
is equal to 1/ loge 2 ≈ 1.4427 bits.) So, in the example above, one achieves a lower relative
entropy (redundancy) by proceeding in the quantum domain, as opposed to the classical one.

In the caser = 0 (the fully mixed state), the quantum (Krattenthaler–Slater) asymptotics
is given by the expression

3

2
log

N

2πe
− logwq(0) + o(1). (38)

For a pure state (r = 1), in the case thatwq(r) is continuous and non-zero atr = 1, the
asymptotics is given, in general, by [20]

2 logN − 3 log 2− logπ − logwq(1) + o(1). (39)

However, for the particular case of the Jeffreys’ prior (31), which issingular at r = 1, we
have [19, equation (2.53)]

3

2
logN +

1

2
logπ − 2 log 2. (40)
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It would be of interest to ascertain if one can construct a probability distribution for
which the (classical) Fisher information matrix is equal (in spherical coordinates) to
[12 equation (3.17)]

Iquasi-Bures(r, θ, φ) =


1

1−r2 0 0

0 r2g(s)
1+r 0

0 0 r2g(s) sin2 θ
1+r

 (41)

wheres = 1−r
1+r andg(s) = ess/(1−s). (If we employg(s) = 2

1+s in (41), we obtain the
Helstrom information matrixHq(r, θ, φ) [12].) This would yield thequantum (but non-
Helstrom) information matrix, the square root of the determinant of which is proportional to
the quasi-Bures probability distribution (33). This probability distribution (rather than (31),
as originally conjectured [19]) has been shown to yield the common minimax and maximin in
the universal coding of the two-level quantum systems [20].

4.3. Relations between monotone metricsand the Fisher information matrices computed in
section 3.1

It would be of considerable interest to determine the precise natureN → ∞ of the Fisher
information matrices corresponding to the use of optimal measurements [1]. (‘For the case
of mixed states of spin-1/2 particles, or for higher spins we do not know what the ‘outer’
boundary of the set of (rescaled) achievable Fisher information matrices based on arbitrary
(non-separable) measurements ofN systems looks like. We have some indications about the
shape of this set. . . and we know that it is convex and compact’ [2, p 19].) In particular,
we would like to ascertain whether or not there is convergence in form (to a diagonal matrix
in spherical coordinates) between even and odd values ofN, as numerical evidence indicates,
and whether or not the Fisher information matrices are asymptotically simply proportional
to some specific member (41) of a broad class of natural metric tensors (which includes the
Bures and quasi-Bures metrics discussed in section 4.2) for the quantum states associated with
operator monotone functionsf (s) = 1

g(s)
[12].

4.3.1. The (2, 2)- and (3, 3)-entries of the diagonal Fisher information matrices for even N.
In fact, if we equate the (2, 2)-entries of the diagonal Fisher information matrices given in
section 3.2.1 for the optimal measurements forN = 4 andN = 6 to the (2, 2)-cell ofN times
the general matrix (41) and solve forg(s), recalling thats = 1−r

1+r , we obtain, forN = 4

g(s) = 1

6(1 + s)3
(6 + 17s + 6s2) (42)

and forN = 6

g(s) = 1

45(1 + s)5
(45 + 222s + 416s2 + 222s3 + 45s4). (43)

Both these symmetry-exhibiting functions, (42) and (43), as well as the corresponding
(Bures/minimal monotone) result (the equation of a hyperbola) forN = 2, that is,

g(s) = 1

1 + s
(44)

are monotonically decreasing on the positive real axis (figure 3), but we are presently not
aware (for the casesN = 4 and 6, that is) if the reciprocals,f (s) = 1/g(s), areoperator
monotone functions, as required for membership in the class of monotone metrics of Petz
and Sud́ar [12, 39]. (A functionf (s), mapping the non-negative real axis to itself, is called
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Figure 3. Monotonically decreasing functionsg(s), that is, (42), (43) and (44), obtained by
equating the (2, 2)-entries of the computed Fisher information matrices (16), (17) and (5) for
N = 4, 6 and 2, respectively, withN times the (2, 2)-entry of the general matrix (41) for a
monotone metric. The curve forN = 6 (upper) dominates that forN = 4 (middle), which in turn
dominates the hyperbola forN = 2 (lower).

operator monotone if the relation 0� K � H implies 0� f (K) � f (H) for all matrices
K andH of any order. The relationK � H implies that all the eigenvalues ofH − K are
non-negative.)

If we were to include in figure 3 the corresponding function for thequasi-Bures monotone
metric, that is

g(s) = ess/(1−s)

2
(45)

then it would be essentially indistinguishable from the hyperbola forN = 2 (corresponding
to the Bures/minimal monotone metric).

4.3.2. The (1, 1)-entries of the diagonal Fisher information matrices for even N. If, pursuing
these lines of thought, one could develop a formula for arbitrary (even)N for the (2, 2)-entry
of the Fisher information matrix for optimal measurements, and obviously easily then for the
(3, 3)-entry (which would be the (2, 2)-entry multiplied by sin2 θ ), the remaining question, of
course, would be to obtain a general formula for the (1, 1)-entry. In this regard, the apparent
general result (established above forN = 2, . . . ,7) that the Gill–Massar trace is 2N − 1 in
the pure state limit might prove helpful. But since the (1, 1)-entry of the metric tensor for
any monotone metric (41) is always simply1

1−r2 , it would apparently be necessary to have
someasymptotic convergence to this expression, being that the results in the computed Fisher
information matrices (16) and (17) forN = 4 and 6 (and presumably for arbitrary evenN)
contain polynomials inr in their numerators, and not simply a constant term. In figure 4 we
plot the (1, 1)-entries divided byN of the computed Fisher information matrices, in spherical
coordinates, forN = 2,4 and 6.

4.3.3. Modified Gill–Massar traces based on the Yuen–Lax (maximal monotone) and quasi-
Bures information matrices. In section 3.3, we defined the Gill–Massar trace as the trace
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Figure 4. (1, 1)-entries divided byN of the computed diagonal Fisher information matrices (5),
(16) and (17) forN = 2,4 and 6, respectively. The value atr = 0.9 is greatest forN = 6 and
least forN = 2.

of the product of the inverse of the quantumHelstrom information matrix and the Fisher
information matrices we had computed (section 3.1) based on the optimal (in terms of
fidelity) measurements of Vidalet al [1] for N = 2, . . . ,7. Now the quantum Helstrom
information matrix corresponds to the use of theminimal monotone (Bures) metric, as well as
thesymmetric logarithmic derivative. Now, we replace this with themaximal monotonemetric,
corresponding to theright logarithmic derivative [4, equation (4.27)], associated with Yuen and
Lax [46]. This can be accomplished by usingg(s) = (1 + s)/(2s) in the (diagonal/orthogonal)
metric tensor (41) rather thang(s) = 2

1+t (which gives the quantum Helstrom information
matrix). Then, we find that in the pure state limit (r → 1) the values of the so-modified traces
are exactlyN − 1 (rather than 2N − 1) for all our six casesN = 2, . . . ,7. ForN = 2, this is

G̃M2 = 3 − 2r2 (46)

for N = 4 it is

G̃M4 = 1

12
(87− 61r2 + 10r4) (47)

and forN = 6 is

G̃M6 = 1

120
(1425− 1070r2 + 307r4 − 62r6). (48)

These three functions, scaled by their value atr = 1, that isN − 1, are plotted in figure 5.
The traces̃GMN for N = 3 and 7 are (three-line) functions of not onlyr, as previously,

but of θ andφ as well. ForN = 5, we have

G̃M5 = 1

16

(
147− 96r2 + 13r4 +

10(r2 − 1)3

r2 + r2 cos 2θ − 2

)
. (49)

In the fully mixed state limit (r → 0), the values of the traces are 3, 5, 7.25, 9.5, 11.875 and
11.1875.

If we alternatively employ the quasi-Bures metric,usingg(s) = ess/(1−s), then, in the pure
state limit forN = 2,4 and 6 we get traces equalling(4+e)/e ≈ 2.471 52,3+8/e≈ 5.943 04
and 5 + 12/e ≈ 9.414 55, respectively. (These results are intermediate, then, between those
for the minimal and maximal monotone metrics.) Forr = 0, the corresponding outcomes are
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Figure 5. Traces (scaled byN−1) forN = 2,4 and 6 based on the Yuen-Lax/maximal monotone
metric analysis. They-intercepts forr = 0 increase withN.

Figure 6. Traces, scaled by their values atr = 1, forN = 2,4 and 6 based on the quasi-Bures
monotone metric analysis. They-intercepts forr = 0 increase withN.

the same as in the two situations above. In figure 6, we plot these three traces scaled by the
noted values atr = 1.

The curves forN = 2 and 4 intersect atr = 0.395 121.

5. Concluding remarks

We have explicitly constructed the 3× 3 Fisher information matrices for the optimal
measurements of Vidalet al [1] for N = 2, . . . ,7, have found that they are tightly bounded
by (N − 1)Hq near the pure state boundary, and conjectured that they converge from above
to N2 times the identity matrix at the fully mixed state (r = 0). As our main finding, we have
uncovered (section 3.3) an interesting (less strict) analogue for non-separable measurements
of a ‘new quantum Craḿer–Rao inequality’ of Gill and Massar [2, equation (27)]. The
possibility of extending it to the casesN > 7 appears to be a challenging problem. Also, the
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development of optimal measurement schemes for multiple copies ofm-level systems,m > 2,
and the subsequent evaluation of their Fisher information characteristics, merits investigation
(cf. [9]). In this regard, we have presented in section 3.4.3 additional evidence—for an optimal
measurement we devised for the casem = 3, N = 2—that has led us to the conjecture that
for optimal non-separable measurements ofN copies ofm-level quantum systems, the ‘Gill–
Massar trace’ equals(2N − 1)(m− 1) in the pure state limit forall m andN.

Additionally, it would be of interest to study the Fisher information matrices associated
with optimal measurements based oncontinuous oproms [47, p 386] [48]. The relation
between optimal measurements (section 3) and universal quantum coding (section 4.2)—both
involving averaging with respect to isotropic prior probability distributions by projecting onto
total spin eigenstates—appears to be worthy of further consideration. (Fischer and Freyberger
recently compared the use of single adaptive measurements, which possess certain practical
advantages, with the use of non-separable ones [3].)

We have also investigated here several related topics, all pertaining to the information-
theoretic properties of the two-level quantum systems. We have posed the problem of
constructing an operator-valued probability measure (oprom) for the smallest number possible
of copiesN � 4 which yields the quadrinomial probability distribution (2), the Fisher
information matrix for which is simply four times the quantum (Helstrom) information matrix
(2). Also, we discuss in section 3.1.6 what appears to be an intriguing connection between our
results and the work of Frieden [29] concerning differences between classical and quantum
information.
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